Archive | Featured

RSS feed for this section

Systematic Variation in Rhythm Production as Tempo Changes

Barton, S., Getz, L., & Kubovy, M. (2017). Systematic Variation in Rhythm Production as Tempo Changes. Music Perception: An Interdisciplinary Journal, 34(3), 303-312.

We investigated the effect of tempo on the production of the syncopated 3-2 son clave rhythm. We recorded eleven experienced percussionists performing the clave pattern at tempi ranging from 70 bpm to 210 bpm. As tempo increased, percussionists shortened the longest intervals and lengthened the shortest interval towards an intermediate interval that is located in the first and second positions in the pattern. This intermediate interval was stable across tempi. Contrary to prior studies, we found that the complexity of interval ratios had little effect on production accuracy or stability and the “short” interval in the pattern was not particularly stable. These results suggest that as tempo is varied, (1) experienced musicians systematically distort rhythmic intervals, (2) rhythmic configuration, and not just the complexity of interval ratios, affects the production of rhythmic intervals, and (3) the distinction between long and short intervals is context-dependent.


Music Perception

Creativity in the Generation of Machine Rhythms

S. Barton (2016). In proceedings from The 1st Conference on Computer Simulation of Musical Creativity.

Abstract: This paper explores musical, psychological and philosophical ideas about how humans and machines interact in creative processes. It argues that creativity is a function of both generator and receiver, and that these roles can be amorphous in the creation and experience of electronic music. It offers an approach to structuring temporal spaces for rhythmic composition, which leads to the idea of machine rhythms, which are proposed as a promising area for creative expression.

Original Gravity Podcast: Rise of a City

Join Original Gravity Artistic Director Keith Kirchoff and Public Relations Guru Greg Carlson (both exceptional brewers) as they design a unique, homebrewed beer that will aesthetically pair with Scott Barton’s Rise of a City, a piece for musical robot and guitar featured on our Summer 2016 Mystic Brewery concert.

MARIE: Monochord-Aerophone Robotic Instrument Ensemble

T. Rogers, S. Kemper, S. Barton (2015). In proceedings from The 15th International Conference on New Interfaces for Musical Expression.


The Modular Electro-Acoustic Robotic Instrument System (MEARIS) represents a new type of hybrid electroacoustic-electromechanical instrument model. Monochord-Aerophone Robotic Instrument Ensemble (MARIE), the first realization of a MEARIS, is a set of interconnected monochord and cylindrical aerophone robotic musical instruments created by Expressive Machines Musical Instruments (EMMI). MARIE comprises one or more matched pairs of Automatic Monochord Instruments (AMI) and Cylindrical Aerophone Robotic Instruments (CARI). Each AMI and CARI is a self-contained, independently operable robotic instrument with an acoustic element, a control system that enables automated manipulation of this element, and an audio system that includes input and output transducers coupled to the acoustic element. Each AMI-CARI pair can also operate as an interconnected hybrid instrument, allowing for effects that have heretofore been the domain of physical modeling technologies, such as a “plucked air column” or “blown string.” Since its creation, MARIE has toured widely, performed with dozens of human instrumentalists, and has been utilized by nine composers in the realization of more than twenty new musical works. link to paper

The specificity of expertise: For whom is the clave pattern the “key” to salsa music?

L. Getz, S. Barton, M. Kubovy (2014). Acta Psychologica; Volume 152, October 2014.

Each Latin salsa music style is associated with a characteristic clave pattern that constitutes an essential structure for performers. In this article we asked what types of expertise are needed to detect the correct salsa–clave pairing. Using two clave patterns (the 3–2 and 2–3 son clave) and three manipulated alternatives, we asked listeners to choose the correct clave pattern for a variety of bombacalypsomambo and merengueexcerpts. The results of Studies 1 and 2 show that listeners unfamiliar with salsa were unable to detect the correct salsa–clave pairing. Listeners who had some music training or were familiar with salsa detected the need for syncopation but not the specific pairing. Only musicians well-acquainted with salsa correctly detected the salsa–clave pairing. Studies 3 and 4 showed that incorrect choices were not due to an inability to distinguish between the alternatives: both adults and five-year-olds could easily tell apart the various patterns we used. We conclude that the distinction between the 2–3 and 3–2 claves is not inherent in the music itself, but rather is a convention to be learned through exposure and training. We discuss the results using an analogy to language learning. link to paper


The Human, the Mechanical, and the Spaces in between: Explorations in Human-Robotic Musical Improvisation

S. Barton (2013).  Published in the Proceedings of the Ninth Artificial Intelligence and Interactive Digital Entertainment International Conference (AIIDE 2013)


HARMI (Human and Robotic Musical Improvisation) is a software and hardware system that enables musical robots to improvise with human performers. The goal of the system is not to replicate human musicians, but rather to explore the novel kinds of musical expression that machines can produce. At the same time, the system seeks to create spaces where humans and robots can communicate with each other in a common language. To help achieve the former, ideas from contemporary compositional practice and music theory were used to shape the system’s expressive capabilities. In regard to the latter, research from the field of cognitive psychology was incorporated to enable communication, interaction, and understanding between human and robotic performers. The system was partly developed in conjunction with a residency at High Concept Laboratories in Chicago, IL, where a group of human improvisers performed with the robotic instruments. The system represents an approach to the question of how humans and robots can interact and improvise in musical contexts. This approach purports to highlight the unique expressive spaces of humans, the unique expressive spaces of machines, and the shared spaces between the two. link to paper

Figure <-> Ground

two channel recording; 2:39

Fall 2013

Figure <-> Ground interprets the idea of negative space in the context of rhythm and time.  In one formulation, the subjects are percussive sound points and the negative spaces are the durations that connect those sound points.  As the piece progresses, the elements that constitute a sound point are increasingly displaced in time, filling adjacent negative spaces.  The original metric positions and rhythmic identities become more ambiguous as a result, inviting us to both find boundaries between a subject and its negative spaces and to superimpose remembered structure on an increasingly diffuse texture.  The idea of negative space is also explored in rhythm by sonifying sound points and silencing intermediary durations, and then sonifying intermediary durations and silencing sound points.  Negative space is further interpreted in the context of rhythmic stylistic conventions.  The rhythmic configurations in the latter half of the piece are beat-based but also convey quickly-changing meters, syncopations, cross-rhythms and an avoidance of repetition on smaller time scales.  This sort of rhythmic expression inhabits a space between subject-points defined by contemporary Western art music and popular music.